
RAIR Protocol
Case Study

RAIR Protocol Case Study • 2

What is Web3?

M any in the tech community believe that
the decentralized web, also known
as Web3, is the next evolution of the

internet. Users have more control over their data
and activities, and unlike the current internet,
where centralized entities (ex. Google) control
user data, Web3 leverages blockchain technology,
smart contracts, and decentralized applications
(dApps) to create a more open, secure, and user-
centric web.

Web3 relies on deployment layers to handle the
complexity of dApps, ensuring scalability, security,
and efficiency. These layers make Web3 more
practical by improving performance, flexibility, and
lowering costs.

Client: RAIR Protocol

R AIR Protocol (RP) is a distributed application
with a decentralized backend that is
easily deployed in the cloud. There are no

centralized API keys, and all aspects of the front
and backend are completely configurable.

The main features of the platform include:

• Token marketplace application

• Media streaming engine with built-in DRM

• Syncing engine across 8+ blockchains

• Integrations with Metamask, Filebase,
Hashicorp, and more

• Authentication via Web3Auth, Yoti,
and Metamask

Users can mint NFTs, create collections, stream
video NFTs, set prices and royalties, and more.
Metadata for the NFTs are easily managed via
csv upload.

Under the technical leadership of CTO Garrett
Minks, RP has advanced Web3 by open-sourcing
its deployment technology, a move essential for
securing deals with large enterprises needing source
code access. RP’s open-source framework can
increase application development speed by a factor
of ten. According to the RP website, “Only a true
open source deployment ecosystem can unlock the
enterprise adoption our industry needs to scale to
the next billion users.”

As an experienced CTO, Minks understands that
QA testing is essential to successful products. “A
dev project without QA is like a soccer team without
a goalie,” he said. “It’s critical to have functional
testing that communicates well with developers,
sending code back for review.” There was no doubt
that Minks would procure testing services — the
question was who he would choose.

RAIR Protocol Case Study • 3

Why OnPath?

W hen asked why he chose OnPath,
Minks explained that while he looked
at Eastern-European providers, he

preferred a US-based shop. Because of an offered
trial engagement, Minks found OnPath to be an
easy choice.

Onboarding

Minks reported that onboarding OnPath was
drama-free and non-disruptive.

Mixed Onshore/Offshore Team

Minks said, “OnPath’s offshore resources were
sympathetic to our time zone and adapted to
our work shifts. We had our daily catchup with
no language issues at all. We ended up with what
amounts to as surrogate employees, but without
the management responsibilities — OnPath
management was available at a moment’s notice.”

Minks added, “OnPath gave us high quality
resources for offshore prices”.

“OnPath’s offshore resources were sympathetic to our
time zone and adapted to our work shifts. We had our
daily catchup with no language issues at all.” -Garrett Minks

RAIR Protocol Case Study • 4

Solutions and Results

QAOps Solution

As the project developed, RP needed support for
both testing and deployment. Minks reported
that OnPath was able to ramp up on the

DevOps side, evolving into a full QAOps engagement.

Critical Documentation

When publishing open source, meticulous
documentation is essential to successful
adaptation. OnPath engineers supported this
effort. “OnPath tightened up our work,” said
Minks. On the security side, OnPath worked to
protect RAIR’s critical system to avoid exposure
when they went open source.

OnPath CEO Brian Borg said, “Our original
engagement was strictly functional testing, but we
quickly realized that there was a critical security
component that needed to be addressed. We
brought in additional expertise to do a thorough
security audit, point out risks in their smart contracts,
blockchain approach, and overall infrastructure.”

Flexibility

Because OnPath scales QA services as needed,
Minks was able to quickly expand or reduce testing
activities without interrupting development. “This
contributed to reducing resource costs when
needed,” said Minks.

Question: How would you rate the quality of
OnPath’s engineering?

Minks: “Ten out of ten. OnPath’s support in going
open source was invaluable,” he said.

What types of testing were needed?

OnPath began with manual and automated
functional testing to ensure immediate platform
stability. Authentication, blockchain functionality
and accessibility, security testing, performance
testing, user acceptance testing, microservices and
API testing all entered the picture over time.

“OnPath tightened
up our work. On the
security side, OnPath
worked to protect
RAIR’s critical system
to avoid exposure
when we went open
source.” -Garrett Minks

RAIR Protocol Case Study • 5

Additional challenges/goals

OnPath was engaged with RP when the decision
was made to go open source. Because OnPath was
brought in early, they were able to consult on good
quality practices from the start — a fundamental
principle of QAOps. RP and OnPath were aligned
from the beginning. With open source, anyone can
submit changes but it still needs to be tested and
integrated. The world is now your dev team.

When the open-source decision was made, OnPath
was able to quickly adapt a QA strategy to meet the
new paradigm. There were also process changes
— code testing was in progress, now with a much
larger dev team.

DevOps management

As the team evolved and shifted, the OnPath QA
team took on more responsibility, including setting
up and managing the Google Cloud Platform (GCP)
infrastructure and other devops responsibilities.
OnPath also assisted in migrating to the distributed
Akash cloud, and once the platform went open
source, helped build a turnkey solution to automate
the setup on the cloud of the user’s choice.

Security testing

Security testing was approached with thorough
diligence given the digital rights management and
financial aspects of the platform. From architectural
reviews to source code analysis and cloud security
audits to web scans, every aspect of the platform
was checked for solid security performance.

An Evolving Project Scope

The move to open-source had many new
implications for testing from both a tools and process
perspective. Borg said, “We pivoted often, as the
project scope changed with each shift. Whenever RP
identified a new market fit with added functionality,
we adapted to meet their testing needs. As RP
evolved, OnPath consistently adapted.”

“Whenever RP identified a new market fit with added
functionality, we adapted to meet their testing needs.
As RP evolved, OnPath consistently adapted.” -Garrett Minks

RAIR Protocol Case Study • 6

Technology and tools

QA tools
Jira, Xray, Confluence
Selenium - functional and health check automation
Postman - API automation
Locust - performance automation
Jest - integration automation
Browserstack - cross platform testing
Jenkins - CI/CD pipeline

Security testing
OWASP ZAP - passive scanning
Burp Suite - active scanning
Clair - container testing
SonarCube - source code static analysis
Shodan - OSINT
HTTP Header MDN - OSINT

Tech Stack
Front end:
JavaScript React

Middle / Logic
Javascript, Typescript, Alchemy
Solidity - Smart contracts

Back end
Docker and Docker Compose
Kubernetes - production deployment

Storage
MongoDB - data
GCS (Google Cloud Storage) - video
Filebase (IPFS storage) - media
Hashicorp - Secret keys

Integrations
Blockchains
Metamask - wallet authentication
Web3Auth - authentication
Yoti - facial age estimation
Cloud agnostic - AWS, Azure, GCP, Akash

 Results

500
functional tests

60
Selenium automations*

286
Xray automated tests

80
Postman API automation tests*

12
scripts on Locust Performance Tool

25
Jest Tool tests for SDK and integration automation
testing

100s
of automation tests, covering: functional, API, SDK,
and performance testing.”

763
Minimum of bugs opened in Jira — 729 closed

6
QA team members through the life of the project -
manual, automation, security, management

*Ongoing Selenium use for health checks
*Ongoing Postman API automation tests

